Заголовок:
Комментарий:
Готово, можно копировать.
РЕШУ ЦТ — математика ЦЭ
Вариант № 4287
1.  
i

Об­ра­зу­ю­щая ко­ну­са равна 26 и на­кло­не­на к плос­ко­сти ос­но­ва­ния под углом 60°. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са.

1) 338 Пи
2) 338 ко­рень из 3 Пи
3) 169 Пи
4) 260 ко­рень из 3 Пи
5) 676 Пи
2.  
i

Пря­мые a и b, пе­ре­се­ка­ясь, об­ра­зу­ют че­ты­ре угла. Из­вест­но, что сумма трех углов равна 210°. Най­ди­те гра­дус­ную меру мень­ше­го угла.

1) 150°
2) 15°
3) 30°
4) 10°
5) 105°
3.  
i

Ве­ли­чи­ны a и b яв­ля­ют­ся прямо про­пор­ци­о­наль­ны­ми. Ис­поль­зуя дан­ные таб­ли­цы, най­ди­те не­из­вест­ное зна­че­ние ве­ли­чи­ны a.

 

a1,9
b1087,6
1) 32
2) 27
3) 22
4) 14
5) 56
4.  
i

Ука­жи­те номер вы­ра­же­ния, яв­ля­ю­ще­го­ся од­но­чле­ном вось­мой сте­пе­ни:

а) 2x в сте­пе­ни 8 yz в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка       б)  ко­рень из: на­ча­ло ар­гу­мен­та: 3a в квад­ра­те конец ар­гу­мен­та x в сте­пе­ни 6 y      в)  дробь: чис­ли­тель: xyz в сте­пе­ни 5 , зна­ме­на­тель: 2c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка конец дроби       г)  дробь: чис­ли­тель: 2xy левая круг­лая скоб­ка xy пра­вая круг­лая скоб­ка в кубе , зна­ме­на­тель: 3 конец дроби       д) 2x в сте­пе­ни 8 y
1) а
2) 6
3) в
4) г
5) д
5.  
i

Функ­ция y  =  f(x) за­да­на на мно­же­стве дей­стви­тель­ных чисел и яв­ля­ет­ся убы­ва­ю­щей на об­ла­сти опре­де­ле­ния. Среди ее зна­че­ний f левая круг­лая скоб­ка 6,62 пра­вая круг­лая скоб­ка ; f левая круг­лая скоб­ка дробь: чис­ли­тель: 51, зна­ме­на­тель: 7 конец дроби пра­вая круг­лая скоб­ка ; f левая круг­лая скоб­ка дробь: чис­ли­тель: 4 Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка ; f левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 26 конец ар­гу­мен­та пра­вая круг­лая скоб­ка ; f левая круг­лая скоб­ка 4 Пи пра­вая круг­лая скоб­ка ука­жи­те наи­боль­шее.

1) f левая круг­лая скоб­ка 6,62 пра­вая круг­лая скоб­ка
2) f левая круг­лая скоб­ка дробь: чис­ли­тель: 51, зна­ме­на­тель: 7 конец дроби пра­вая круг­лая скоб­ка
3) f левая круг­лая скоб­ка дробь: чис­ли­тель: 4 Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка
4) f левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 26 конец ар­гу­мен­та пра­вая круг­лая скоб­ка
5) f левая круг­лая скоб­ка 4 Пи пра­вая круг­лая скоб­ка
6.  
i

Че­ты­рех­уголь­ник MNPK, в ко­то­ром ∠N  =  128°, впи­сан в окруж­ность. Най­ди­те гра­дус­ную меру угла K.

1) 64 гра­ду­сов
2) 128 гра­ду­сов
3) 90 гра­ду­сов
4) 180 гра­ду­сов
5) 52 гра­ду­сов
7.  
i

Урав­не­ние  дробь: чис­ли­тель: 4x минус 9, зна­ме­на­тель: 5 конец дроби плюс 2=x минус дробь: чис­ли­тель: 11 минус x, зна­ме­на­тель: 5 конец дроби рав­но­силь­но урав­не­нию:

1) 6 в сте­пе­ни x =1
2) 6 в сте­пе­ни x =6
3) 2 в сте­пе­ни x =32
4) 2 в сте­пе­ни x =64
5) 5 в сте­пе­ни x =25
8.  
i

Пусть x1 и x2  —  корни урав­не­ния x в квад­ра­те минус 3x плюс q=0. Най­ди­те число q, при ко­то­ром вы­пол­ня­ет­ся ра­вен­ство x_1 в квад­ра­те плюс x_2 в квад­ра­те =25.

1) -8
2) -3
3) 8
4) 4
5) -5
9.  
i

Диа­метр окруж­но­сти пе­ре­се­ка­ет хорду под углом 60° и точ­кой пе­ре­се­че­ния делит ее на от­рез­ки дли­ной 2 и 12. Най­ди­те квад­рат ра­ди­у­са окруж­но­сти.

1) 24
2) 196
3) 124
4) 49
5) 148
10.  
i

Най­ди­те сумму всех целых ре­ше­ний не­ра­вен­ства  левая круг­лая скоб­ка x плюс ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та пра­вая круг­лая скоб­ка плюс 14\geqslant2x в квад­ра­те минус 6x.

1) 27
2) 12
3) 4
4) 14
5) 28
11.  
i

Диа­го­на­ли тра­пе­ции равны 15 и 20. Най­ди­те пло­щадь тра­пе­ции, если ее сред­няя линия равна 12,5.

12.  
i

Точки А(1;2), B(5;6) и C(8;6)  — вер­ши­ны тра­пе­ции ABCD (AD||BC). Най­ди­те сумму ко­ор­ди­нат точки D, если BD=4 ко­рень из 2 .

13.  
i

Из­вест­но, что при a, рав­ном −2 и 4, зна­че­ние вы­ра­же­ния 4a в кубе плюс 3a в квад­ра­те минус ab плюс c равно нулю. Най­ди­те зна­че­ние вы­ра­же­ния b + с.

14.  
i

Вы­бе­ри­те три вер­ных утвер­жде­ния:

1)  если  ко­си­нус левая круг­лая скоб­ка арк­ко­си­нус a пра­вая круг­лая скоб­ка = ко­си­нус левая круг­лая скоб­ка арк­ко­си­нус дробь: чис­ли­тель: 1, зна­ме­на­тель: 18 конец дроби пра­вая круг­лая скоб­ка , то a= дробь: чис­ли­тель: 1, зна­ме­на­тель: 18 конец дроби ;

2)  если  ко­си­нус альфа = минус ко­си­нус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 18 конец дроби , то  арк­ко­си­нус левая круг­лая скоб­ка ко­си­нус альфа пра­вая круг­лая скоб­ка = минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 18 конец дроби ;

3)  если  синус альфа = синус дробь: чис­ли­тель: 17 Пи , зна­ме­на­тель: 18 конец дроби , то  арк­си­нус левая круг­лая скоб­ка синус альфа пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 17 Пи , зна­ме­на­тель: 18 конец дроби ;

4)  если  арк­ко­си­нус a= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 18 конец дроби , то a= ко­си­нус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 18 конец дроби ;

5)  если  синус альфа = синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 18 конец дроби , то  альфа = минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 18 конец дроби ;

6)  если  синус альфа = синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 18 конец дроби , то  арк­си­нус левая круг­лая скоб­ка синус альфа пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: Пи , зна­ме­на­тель: 18 конец дроби .

 

Ответ за­пи­ши­те циф­ра­ми (по­ря­док за­пи­си цифр не имеет зна­че­ния). На­при­мер: 123.

15.  
i

Дана гео­мет­ри­че­ская про­грес­сия (bn), в ко­то­рой b5  =  −12, b6  =  36. Для на­ча­ла каж­до­го из пред­ло­же­ний А−В под­бе­ри­те его окон­ча­ние 1−6 так, чтобы по­лу­чи­лось вер­ное утвер­жде­ние.

На­ча­ло пред­ло­же­ния

A)  Зна­ме­на­тель этой про­грес­сии равен ...

Б)  Чет­вер­тый член этой про­грес­сии равен ...

В)  Пер­вый член этой про­грес­сии равен ...

Окон­ча­ние пред­ло­же­ния

1)  −4

2)   минус дробь: чис­ли­тель: 4, зна­ме­на­тель: 27 конец дроби

3)   минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби

4)  −3

5)  4

6)   дробь: чис­ли­тель: 4, зна­ме­на­тель: 81 конец дроби

Oтвет за­пи­ши­те в виде со­че­та­ния букв и цифр, со­блю­дая ал­фа­вит­ную по­сле­до­ва­тель­ность букв ле­во­го столб­ца. Пом­ни­те, что не­ко­то­рые дан­ные пра­во­го столб­ца могут ис­поль­зо­вать­ся не­сколь­ко раз или не ис­поль­зо­вать­ся во­об­ще. На­при­мер: А1Б1В4.

16.  
i

На диа­грам­ме по­ка­за­но ко­ли­че­ство всех по­ку­па­те­лей ин­тер­нет-ма­га­зи­на (П) и ко­ли­че­ство по­ку­па­те­лей, со­вер­шив­ших более одной по­куп­ки (ПБ), за пе­ри­од шесть ме­ся­цев (с июля по де­кабрь). Уста­но­ви­те со­от­вет­ствие между во­про­са­ми А−В и от­ве­та­ми 1−6.

Во­прос

A)  В каком ме­ся­це ко­ли­че­ство всех по­ку­па­те­лей было наи­боль­шим?

Б)  В каком ме­ся­це ко­ли­че­ство по­ку­па­те­лей, со­вер­шив­ших более одной по­куп­ки, было 160?

В)  В каком ме­ся­це ко­ли­че­ство по­ку­па­те­лей, со­вер­шив­ших более одной по­куп­ки, со­ста­ви­ло 20% от ко­ли­че­ства всех по­ку­па­те­лей в этом ме­ся­це?

Ответ

1)  Июль

2)  Ав­густ

3)  Сен­тябрь

4)  Ок­тябрь

5)  Но­ябрь

6)  Де­кабрь

 

Ответ за­пи­ши­те в виде со­че­та­ния букв и цифр, со­блю­дая ал­фа­вит­ную по­сле­до­ва­тель­ность букв ле­во­го столб­ца. Пом­ни­те, что не­ко­то­рые дан­ные пра­во­го столб­ца могут ис­поль­зо­вать­ся не­сколь­ко раз или не ис­поль­зо­вать­ся во­об­ще. На­при­мер, А1Б1В4.

17.  
i

Най­ди­те пе­ри­метр пра­виль­но­го ше­сти­уголь­ни­ка, мень­шая диа­го­наль ко­то­ро­го равна 10 ко­рень из 3 .

18.  
i

Най­ди­те сумму всех на­ту­раль­ных чисел a, для ко­то­рых вы­пол­ня­ет­ся ра­вен­ство НОД левая круг­лая скоб­ка 18, a пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: a, зна­ме­на­тель: 2 конец дроби .

19.  
i

Най­ди­те сумму целых ре­ше­ний не­ра­вен­ства  дробь: чис­ли­тель: левая круг­лая скоб­ка x плюс 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в квад­ра­те минус 18 пра­вая круг­лая скоб­ка x, зна­ме­на­тель: левая круг­лая скоб­ка x в квад­ра­те плюс 25 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 11 минус 3 ко­рень из: на­ча­ло ар­гу­мен­та: 14 конец ар­гу­мен­та пра­вая круг­лая скоб­ка конец дроби \geqslant0.

20.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 8 конец ар­гу­мен­та умно­жить на ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: минус 7 конец ар­гу­мен­та умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: 32 конец ар­гу­мен­та умно­жить на ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 49 конец ар­гу­мен­та минус 7 дробь: чис­ли­тель: ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 64 конец ар­гу­мен­та , зна­ме­на­тель: ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: минус 2 конец ар­гу­мен­та конец дроби .

21.  
i

Най­ди­те сумму всех целых ре­ше­ний не­ра­вен­ства  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,3 пра­вая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 4,7 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 9,1 пра­вая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка боль­ше или равно 0.

22.  
i

О на­ту­раль­ных чис­лах а и b из­вест­но, что  дробь: чис­ли­тель: a, зна­ме­на­тель: b конец дроби = дробь: чис­ли­тель: 6, зна­ме­на­тель: 17 конец дроби , НОД(a; b)  =  4. Най­ди­те НОК(a + b; 10).

23.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  левая круг­лая скоб­ка x_0 плюс 12 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,7 пра­вая круг­лая скоб­ка 32, зна­ме­на­тель: ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,7 пра­вая круг­лая скоб­ка 2 конец дроби пра­вая круг­лая скоб­ка , где x0  — ко­рень урав­не­ния  ло­га­рифм по ос­но­ва­нию 7 левая круг­лая скоб­ка 30 минус 15 x пра­вая круг­лая скоб­ка = ло­га­рифм по ос­но­ва­нию 7 левая круг­лая скоб­ка x в квад­ра­те минус 8 x плюс 12 пра­вая круг­лая скоб­ка .

24.  
i

На ри­сун­ке изоб­ра­жен гра­фик функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , за­дан­ной на про­ме­жут­ке  левая квад­рат­ная скоб­ка минус 6; 14 пра­вая квад­рат­ная скоб­ка . Най­ди­те про­из­ве­де­ние зна­че­ний ар­гу­мен­та, при ко­то­рых f в сте­пе­ни левая круг­лая скоб­ка \prime пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =0. (Чер­ны­ми точ­ка­ми от­ме­че­ны узлы сетки, через ко­то­рые про­хо­дит гра­фик функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка . пра­вая круг­лая скоб­ка

25.  
i

Най­ди­те зна­че­ние вы­ра­же­ние  дробь: чис­ли­тель: 48, зна­ме­на­тель: Пи конец дроби умно­жить на арк­ко­си­нус левая круг­лая скоб­ка синус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби пра­вая круг­лая скоб­ка .

26.  
i

Най­ди­те про­из­ве­де­ние наи­боль­ше­го от­ри­ца­тель­но­го и наи­мень­ше­го по­ло­жи­тель­но­го целых ре­ше­ний не­ра­вен­ства |4x минус 7| плюс |x плюс 6| боль­ше |3x минус 13|.

27.  
i

В пря­мо­уголь­ный тре­уголь­ник AOB, ка­те­ты ко­то­ро­го OA и OB (OA > OB) лежат со­от­вет­ствен­но на ко­ор­ди­нат­ных осях Ox и Oy, впи­са­на окруж­ность ра­ди­у­са 10. Най­ди­те сумму ко­ор­ди­нат точки ка­са­ния окруж­но­сти и ги­по­те­ну­зы AB, если тре­уголь­ник AOB лежит в пер­вой чет­вер­ти ко­ор­ди­нат­ной плос­ко­сти и его пло­щадь равна 600.

28.  
i

Пря­мо­уголь­ный тре­уголь­ник с ка­те­та­ми, рав­ны­ми 6 и 2 ко­рень из 7 , вра­ща­ет­ся во­круг оси, со­дер­жа­щей его ги­по­те­ну­зу. Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 2V, зна­ме­на­тель: Пи конец дроби , где V  — объём фи­гу­ры вра­ще­ния.

29.  
i

Най­ди­те про­из­ве­де­ние наи­боль­ше­го це­ло­го ре­ше­ния на ко­ли­че­ство всех на­ту­раль­ных ре­ше­ний не­ра­вен­ства  ло­га­рифм по ос­но­ва­нию 4 в квад­ра­те левая круг­лая скоб­ка 27 минус x пра­вая круг­лая скоб­ка боль­ше или равно 2 умно­жить на ло­га­рифм по ос­но­ва­нию 4 левая круг­лая скоб­ка 27 минус x пра­вая круг­лая скоб­ка .

30.  
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния x минус ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 36 конец ар­гу­мен­та = дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 6 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: 2x плюс 12 конец дроби .